264 research outputs found

    A Calibration of NICMOS Camera 2 for Low Count-Rates

    Full text link
    NICMOS 2 observations are crucial for constraining distances to most of the existing sample of z > 1 SNe Ia. Unlike the conventional calibration programs, these observations involve long exposure times and low count rates. Reciprocity failure is known to exist in HgCdTe devices and a correction for this effect has already been implemented for high and medium count-rates. However observations at faint count-rates rely on extrapolations. Here instead, we provide a new zeropoint calibration directly applicable to faint sources. This is obtained via inter-calibration of NIC2 F110W/F160W with WFC3 in the low count-rate regime using z ~ 1 elliptical galaxies as tertiary calibrators. These objects have relatively simple near-IR SEDs, uniform colors, and their extended nature gives superior signal-to-noise at the same count rate than would stars. The use of extended objects also allows greater tolerances on PSF profiles. We find ST magnitude zeropoints (after the installation of the NICMOS cooling system, NCS) of 25.296 +- 0.022 for F110W and 25.803 +- 0.023 for F160W, both in agreement with the calibration extrapolated from count-rates 1,000 times larger (25.262 and 25.799). Before the installation of the NCS, we find 24.843 +- 0.025 for F110W and 25.498 +- 0.021 for F160W, also in agreement with the high-count-rate calibration (24.815 and 25.470). We also check the standard bandpasses of WFC3 and NICMOS 2 using a range of stars and galaxies at different colors and find mild tension for WFC3, limiting the accuracy of the zeropoints. To avoid human bias, our cross-calibration was "blinded" in that the fitted zeropoint differences were hidden until the analysis was finalized.Comment: Accepted for Publication in the Astronomical Journal. New version contains added referenc

    Subaru FOCAS Spectroscopic Observations of High-Redshift Supernovae

    Full text link
    We present spectra of high-redshift supernovae (SNe) that were taken with the Subaru low resolution optical spectrograph, FOCAS. These SNe were found in SN surveys with Suprime-Cam on Subaru, the CFH12k camera on the Canada-France-Hawaii Telescope (CFHT), and the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST). These SN surveys specifically targeted z>1 Type Ia supernovae (SNe Ia). From the spectra of 39 candidates, we obtain redshifts for 32 candidates and spectroscopically identify 7 active candidates as probable SNe Ia, including one at z=1.35, which is the most distant SN Ia to be spectroscopically confirmed with a ground-based telescope. An additional 4 candidates are identified as likely SNe Ia from the spectrophotometric properties of their host galaxies. Seven candidates are not SNe Ia, either being SNe of another type or active galactic nuclei. When SNe Ia are observed within a week of maximum light, we find that we can spectroscopically identify most of them up to z=1.1. Beyond this redshift, very few candidates were spectroscopically identified as SNe Ia. The current generation of super red-sensitive, fringe-free CCDs will push this redshift limit higher.Comment: 19 pages, 26 figures. PASJ in press. see http://www.supernova.lbl.gov/2009ClusterSurvey/ for additional information pertaining to the HST Cluster SN Surve

    Rest-Frame R-band Lightcurve of a z~1.3 Supernova Obtained with Keck Laser Adaptive Optics

    Get PDF
    We present Keck diffraction limited H-band photometry of a z~1.3 Type Ia supernova (SN) candidate, first identified in a Hubble Space Telescope (HST) search for SNe in massive high redshift galaxy clusters. The adaptive optics (AO) data were obtained with the Laser Guide Star facility during four observing runs from September to November 2005. In the analysis of data from the observing run nearest to maximum SN brightness, the SN was found to have a magnitude H=23.9 +/- 0.14 (Vega). We present the H-band (approximately rest-frame R) light curve and provide a detailed analysis of the AO photometric uncertainties. By constraining the aperture correction with a nearby (4" separation) star we achieve 0.14 magnitude photometric precision, despite the spatially varying AO PSF.Comment: 11 pages, 8 figures, Accepted for Publication in AJ Updated the citations, fixed typo

    The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z>1 and Building an Early-Type-Hosted Supernova Sample

    Get PDF
    We present ACS, NICMOS, and Keck AO-assisted photometry of 20 Type Ia supernovae SNe Ia from the HST Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Fourteen of these SNe Ia pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Ten of our new SNe Ia are beyond redshift z=1z=1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zeropoint at the count rates appropriate for very distant SNe Ia. Adding these supernovae improves the best combined constraint on the dark energy density \rho_{DE}(z) at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a LambdaCDM universe, we find \Omega_\Lambda = 0.724 +0.015/-0.016 (68% CL including systematic errors). For a flat wCDM model, we measure a constant dark energy equation-of-state parameter w = -0.985 +0.071/-0.077 (68% CL). Curvature is constrained to ~0.7% in the owCDM model and to ~2% in a model in which dark energy is allowed to vary with parameters w_0 and w_a. Tightening further the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z>1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on HST.Comment: 27 pages, 11 figures. Submitted to ApJ. This first posting includes updates in response to comments from the referee. See http://www.supernova.lbl.gov for other papers in the series pertaining to the HST Cluster SN Survey. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Unio

    The Hubble Space Telescope Cluster Supernova Survey: VI. The Volumetric Type Ia Supernova Rate

    Full text link
    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate out to z ~ 1.6 from the Hubble Space Telescope Cluster Supernova Survey. In observations spanning 189 orbits with the Advanced Camera for Surveys we discovered 29 SNe, of which approximately 20 are SNe Ia. Twelve of these SNe Ia are located in the foregrounds and backgrounds of the clusters targeted in the survey. Using these new data, we derive the volumetric SN Ia rate in four broad redshift bins, finding results consistent with previous measurements at z > 1 and strengthening the case for a SN Ia rate that is equal to or greater than ~0.6 x 10^-4/yr/Mpc^3 at z ~ 1 and flattening out at higher redshift. We provide SN candidates and efficiency calculations in a form that makes it easy to rebin and combine these results with other measurements for increased statistics. Finally, we compare the assumptions about host-galaxy dust extinction used in different high-redshift rate measurements, finding that different assumptions may induce significant systematic differences between measurements.Comment: 11 pages, 7 figures. Submitted to the Astrophysical Journal. Revised version following referee comments. See the HST Cluster SN Survey website at http://supernova.lbl.gov/2009ClusterSurvey for control time simulations in a machine-readable table and a complete listing of transient candidates from the surve

    Improving Cosmological Distance Measurements Using Twin Type Ia Supernovae

    Full text link
    We introduce a method for identifying "twin" Type Ia supernovae, and using them to improve distance measurements. This novel approach to Type Ia supernova standardization is made possible by spectrophotometric time series observations from the Nearby Supernova Factory (SNfactory). We begin with a well-measured set of supernovae, find pairs whose spectra match well across the entire optical window, and then test whether this leads to a smaller dispersion in their absolute brightnesses. This analysis is completed in a blinded fashion, ensuring that decisions made in implementing the method do not inadvertently bias the result. We find that pairs of supernovae with more closely matched spectra indeed have reduced brightness dispersion. We are able to standardize this initial set of SNfactory supernovae to 0.083 +/- 0.012 magnitudes, implying a dispersion of 0.072 +/- 0.010 magnitudes in the absence of peculiar velocities. We estimate that with larger numbers of comparison SNe, e.g, using the final SNfactory spectrophotometric dataset as a reference, this method will be capable of standardizing high-redshift supernovae to within 0.06-0.07 magnitudes. These results imply that at least 3/4 of the variance in Hubble residuals in current supernova cosmology analyses is due to previously unaccounted-for astrophysical differences among the supernovaeComment: 37 pages, 9 figures, 5 tables. Accepted for publication in ApJ. Fixed typo in arXiv abstrac

    The Extinction Properties of and Distance to the Highly Reddened Type Ia Supernova SN 2012cu

    Get PDF
    Correction of Type Ia Supernova brightnesses for extinction by dust has proven to be a vexing problem. Here we study the dust foreground to the highly reddened SN 2012cu, which is projected onto a dust lane in the galaxy NGC 4772. The analysis is based on multi-epoch, spectrophotometric observations spanning 3,300 - 9,200 {\AA}, obtained by the Nearby Supernova Factory. Phase-matched comparison of the spectroscopically twinned SN 2012cu and SN 2011fe across 10 epochs results in the best-fit color excess of (E(B-V), RMS) = (1.00, 0.03) and total-to-selective extinction ratio of (RV , RMS) = (2.95, 0.08) toward SN 2012cu within its host galaxy. We further identify several diffuse interstellar bands, and compare the 5780 {\AA} band with the dust-to-band ratio for the Milky Way. Overall, we find the foreground dust-extinction properties for SN 2012cu to be consistent with those of the Milky Way. Furthermore we find no evidence for significant time variation in any of these extinction tracers. We also compare the dust extinction curve models of Cardelli et al. (1989), O'Donnell (1994), and Fitzpatrick (1999), and find the predictions of Fitzpatrick (1999) fit SN 2012cu the best. Finally, the distance to NGC4772, the host of SN 2012cu, at a redshift of z = 0.0035, often assigned to the Virgo Southern Extension, is determined to be 16.6±\pm1.1 Mpc. We compare this result with distance measurements in the literature.Comment: 48 pages, 13 figures. Accepted for publication in The Astrophysical Journal. The spectral time series data presented in this article can be found at http://snfactory.lbl.gov/snf/data

    A New Determination of the High Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys

    Get PDF
    We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of possible models for the evolution of the Type Ia supernova rate as a function of redshift. The data do not distinguish between a flat rate at redshift > 0.5 and a previously proposed model, in which the Type Ia rate peaks at redshift >1 due to a significant delay from star-formation to the supernova explosion. Except for the highest redshifts, where the signal to noise ratio is generally too low to apply this technique, this approach yields smaller or comparable uncertainties than previous work.Comment: Accepted for publication in Ap

    The Hubble Space Telescope Cluster Supernova Survey: II. The Type Ia Supernova Rate in High-Redshift Galaxy Clusters

    Get PDF
    We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.45 from the Hubble Space Telescope (HST) Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 +/- 1 cluster SNe Ia, we determine a SN Ia rate of 0.50 +0.23-0.19 (stat) +0.10-0.09 (sys) SNuB (SNuB = 10^-12 SNe L_{sun,B}^-1 yr^-1). In units of stellar mass, this translates to 0.36 +0.16-0.13 (stat) +0.07-0.06 (sys) SNuM (SNuM = 10^-12 SNe M_sun^-1 yr^-1). This represents a factor of approximately 5 +/- 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution with a power law (proportional to t^s). Under the assumption of a cluster formation redshift of z_f = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = -1.41 +0.47/-0.40, consistent with measurements of the delay time distribution in the field. This measurement is generally consistent with expectations for the "double degenerate" scenario and inconsistent with some models for the "single degenerate" scenario predicting a steeper delay time distribution at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one host-less cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.Comment: 29 pages, 14 figures. Accepted for publication in ApJ on 16 February 2011. See the HST Cluster Supernova Survey website at http://supernova.lbl.gov/2009ClusterSurvey for a version with full-resolution images and a complete listing of transient candidates from the survey. This version fixes a typo in the metadata; the paper is unchanged from v

    Precision Measurement of The Most Distant Spectroscopically Confirmed Supernova Ia with the Hubble Space Telescope

    Get PDF
    We report the discovery of a redshift 1.71 supernova in the GOODS North field. The Hubble Space Telescope (HST) ACS spectrum has almost negligible contamination from the host or neighboring galaxies. Although the rest frame sampled range is too blue to include any Si ii line, a principal component analysis allows us to confirm it as a Type Ia supernova with 92% confidence. A recent serendipitous archival HST WFC3 grism spectrum contributed a key element of the confirmation by giving a host-galaxy redshift of 1.713 +/- 0.007. In addition to being the most distant SN Ia with spectroscopic confirmation, this is the most distant Ia with a precision color measurement. We present the ACS WFC and NICMOS 2 photometry and ACS and WFC3 spectroscopy. Our derived supernova distance is in agreement with the prediction of LambdaCDM.Comment: 13 pages, 6 figures, published in ApJ with updated analysi
    corecore